University of Utah electrical engineers have designed a thin layer made of a transparent plastic or glass that sorts and concentrates sunlight to boost the overall efficiency of solar cells by up to 50 percent. This layer, called a polychromat, can be integrated into the cover glass of a solar panel. It could also be used to boost power efficiency in a cellphone or improve low light conditions for a camera.
“Currently, high-efficiency solar cells are very expensive because they have to be carefully manufactured in a complex environment and are only cost-effective for space or defense applications like the Mars Rover,” says Rajesh Menon, a Utah Science Technology and Research (USTAR) assistant professor of electrical and computer engineering at the U. “We have designed a very cheap optical element that can be incorporated into the cover glass of a solar panel that will separate sunlight into various colors.”
Solar cells absorb light from the sun and convert it into electricity. Despite its tremendous potential as a limitless resource of energy, solar power is currently a small fraction of the global energy supply, due to its high cost compared with conventional power sources. In addition, challenges in materials have further limited solar power’s wide reach.
Solar cell performance is directly linked to the efficiency of converting sunlight into electricity. Solar cells operate on the concept that one absorbed bundle of light from the sun, called a photon, generates electrical charge carriers in a layer of material within the solar cell that then becomes electricity.
Read more in the U News Center
Visit Rajesh Menon’s Laboratory for Optical Nanotechnologies